
00

in

*& PROGRAMMING IN NETWORKS
S AND GRAPHS
<3

-^

ORC 65-1
JANUARY 1965

by

Ellis Johnson

OPERATIONS RESEARCH CENTER

INSTITUTE OF ENGINEERING RESEARCH

v.;^ÖM (I

UNIVERSITY OF C A L I F 0 R N I A - B E R K E L E Y

PROGRAMMING IN NETWORKS AND GRAPHS

by

ELlis L. Johnson
Operations Research Center

University of California, Berkeley

January 1965 ORC 65-1 M

This research has been partially supported by the Office of Naval Research
under Contract Nonr-^22(83) and the National Science Foundation under Grant
GP-2633 with the University of California. Reproduction in whole or in part
is pemitted for any purpose of the United States Government.

CONTENTS

PROGRAMMING IN NETWORKS AND GRAPHS

1. Introduction 1

2. Concepts from Graph Theory 2

3. The Linear Programming Problem 5

k. The Simplex Method for Network Flows 11

5. Hiase 1 22

6. The Primal-Dual Method for Network Flows 27

7. Flows with Gains 50

8. Linear Programming in an Undirected Graph 57

9. Integer Programming in an Undirected Graph k6

10. The Degree-Constrained Subgraph Problem 58

11. References oO

1, InMe'Mction

'l1da paper treats a certain clua ot linear programs, the correapondi:r.?,

graphical interpretation, L~d wi ll br i ng ~ogether the graphical and

tbe alaebiraic approach, 1'be first problem is t he network flo\1 problc:tr ..

Tbe grapd.cal approach and l abeling p~edure are due to For d and

1\l.lkeraon (7), 'ale earlier l inear progruming approa·: h we.s gi ven by

Dultzig [2],

In linear Prosr-11'18 the concept of a ba&ic solu~ion t a l ir. .e.r

ayaU. ot equations and 1 eq alities is :t\l nde.men al since i f re i•'

an optJJD&l solution to a l i Dear program, t her, t here is a.r. op ~mal

baaic solation. A bas i s ot a. matri x A is a matrix B consistl~ o f'

a Mxlm&l set. of linearly i ndependent columns of h 1 a:1d a b&Gl -

solution to the linear system Ax • b , 0 ~ x ~ 0 , is a. s olut-ion

0 0
x for vhich there is a basis h of A aueb tt>.at x. • 0 or

'-'

x~ • Oj unles s AJ is a col\&1 o.f B ,

T'ne ~ of a -trtx A 1a def! ed to e the m!Ll'J..rr.wn numbe!"

l i ne&rly independeDt col.~ ot A • I~ i s a we.L-kcown resW..t of

linear algebra t hat tbe nak 1a also e<iU&l. to t~1.e ma.xlmu.-n r.wn~r

lineq 1naepende0lt I"'OIM, aa4 tha~ for e er · se t. f i lnea:·l y

independent columna of A With tever coli.Uil.IlS t he.:1 t he : L"lk of A

ot her col~ of A can be lldde4 to the set vr.ile preserving the

property of linear l ndepe!'ldenee until the set i;.aa a.s ma:1y colur.ms as

the rank ot A • ~Ll!-'S 1 s. matrix B or ir.A!~pendent CClUIU'lS of A s

a basis of A if, and only if, B has as many columns as the rank of

A , or equivalently if, and only if, every column of A can be written

as a linear combination of the columns of B ,

A square m x m matrix is defined to be singular if its rank

is less than m and is non-singular if its rank is equal to m .

Another well-known result from linear algebra is that a system of

equations with a square, non-singular coefficient matrix has a unique

solution,

2. Concepts from Graph Theory

Definitions:

Graph, Vertices, Edges; A graph G is a finite set V of vertices

v, ,...,v and a finite set E of pairs of vertices, e ■ (v,,v) ,
1 m k i j

called edges. The edge e = (v,,v.) is said to be incident to the
k i J

vertices v,, and v. .
i J

Network, Undirected Graph, Arcs; The edges can be ordered pairs or

unordered pairs, and the edge is correspondingly called directed

or undirected. A directed graph, or network, is a graph with all of

the edges directed. In a network the edges are called arcs, although

the term edge still includes both the directed and undirected case.

Examples of directed graphs are transportation networks and communication

networks. In a transportation network the vertices are junctions, and

the arcs are connections, such as roads and air routes, between junctions.

An undirected connection, for example a two-way street, can be replaced

by two directed edges.

Subgraph, Spanning Subgraph; A subgraph H of G is a graph whose

vertex set V and edge set E are subsets of V and E , respectively.

A spanning eubgraph H of G ia a subgraph wioh the same vertex

set as G .

Path, Simple Path, Cycle; A path in a graph G is a sequence of

vertices and edges, (v , e . v e ,...,v , e , v), such that
Li.dc. n-i n-i n

e is Incident to both v. and v , The vertices v , v
i i i+1 1' n

are called the ends of the path P , and the path is from v tc

v . A simple path is a path with distinct vertices. A cycle is a
n

simple path together with an edge from the beginning to the end of the

path.

Connected, Component: A connected graph is a graph with at least one

path between every pair of vertices, and a graph which is not connected

clearly consists of connected components.

Tree, End, Forest, Spanning Forest: A tree is a connected graph

with no cycles, and an end of a tree is a vertex touching only one

edge of the tree. A forest is a graph consisting of one or more

unconnected trees. A spanning tree of a graph G is a tree which is a

spanning subgraph of G , and a spanning forest of G is a forest

which is a spanning subgraph of G .

Note that all of the definitions from path to spanning forest do not

depend on whether any edges are directed or undirected.

Lemma 1 If there is a path from v to v , then there is a simple

path from v to v .

Proof: Let v^, e , ^o'"' ''^'-l' ^ Vk be a path fr0m Vl t0 Vk *

Let v be the first vertex which is repeated, so that v ,...,v are

distinct and do not appear again in the path. Then suppose v, is the ias'c

listing of vertex v. in the path. Omit the segment c , v ,...,e.

from the path to form a new path vi> ei > vp >• • • > v- » e• i '

j+1 k

A -^.VIT. -f 'he ic-vr ..•.;cLu': l ■*..M —. - 1
K- p-^.'.h -.7 rv.eated, even^vaLly

path w.j.i result.

Lemma 2 The follcwlng is an inductive characterlzaticn of trees; a

tree 1= either a tir^,:.- vertex cr 1= two dlsjcint treea Joined ty &

single edge incident to cne vertex cf one tree and one vertex of the

other tree.

Proof. Clearly, * graph ^ ^n^tr^oted in eu^h a way is a tree, rr»

harder part cf the ir'.'f is to show that every tree satisfies the

condition. If a tree T has no edge, then It is a single vertex.

If T has an edge, say e, « (v , v) , then there is no simple path

between v and vCi net using e because if there were, T would

contain a cycle. Hence, by Lemma 1 there is no path from v. tc v0

not using e . So if e is removed from T , the retailing graph

has at least two conre-.ted componente I1 and T with v in T\
■i. _ x ^

and v0 in T^ . Froir. every vertex v in T there ire sirtle paths

to v. and v ; therefore, there is a simple path to v t,c v

not containing *, . Renc.-5, reaov.^l cf e, causes the remaimr^r graph

to have exactly twe connected ccsmponer.ts T. ai:d T . They are

trees because if either had a cycle, ^c would T .

Lenma 3 Every tree ha* at le^st ere end, and if it has ar. edge, then

it has at least twe ends,

IVoof: The proof is most easily dcxe using lemma 2, Lenmst 5 is

tru.e for a single vertex. Suppose it is true for two trees. Then aiding

an edge incident tc one vertex of each tree will always leavs one end

in each tree. Hence the new tree will, have at least two ends, ar,d the

lemma is proven.

5

Lemma h- A tree with m vertices has m-1 edges.

Proof: The proof is immediate using lemma 2 and Induction as in the

proof of lemma 5.

Lemma 5 Every connected graph G contains a spanning tree T .

Proof: Define a subgraph T having the same vertex set as G and

edge set chosen as follows. Initially, choose any edge of G to be

in T . Thereafter, chcc?e any edge of G that does not produce

a cycle in T . When every edge in 0 ■• I produces a cycle if added

to T , then T is easily seen to be a spanning tree of G .

3. The Linear Programming Probleiri

For a network G , the vertex-arc incidence matrix is defined by

P if arc e . is not incident to vertex v
J i

a, . ^ < 1 if arc e a (v , v) for some v € V

I -1 if arc e » (v, v) for some v € V ,

The linear programming problem is:

minimize z subject to Ax + Us «■ b , C <^ x ^ a , 0 <^ s <^ CJ ,

ex + cs =■ z

where A is an m x n vertex-arc incidence matrix of a network G ,

and U is an m x n matrix such that each column of U has one non-

zero entry which is a +1 or a -1 . If a column of U has a +1

in row i , denote the variable by s, , and if a column of U has a

-1 in row i , denote the variable by s. . Let a be denoted

correspondingly a. or a. , and denote the corresponding cost c by

ci or Ci * Tlle Si anci s^ sxe CQiled slack variables or slacks.

If a variable x, was pertnltted to be negative, then it could be

6

replaced by two variables, Its positive and negative parts, and an axe

would be adjoined to G in the reverse direction of e. . If a variable

x. had a lower bound ß > 0 and e » (v , v) , then b could

be replaced by b. - ß , b replaced by b + ß , a replaced by

O. - ß , and the lower bound replaced by 0 , Nothing is assumed

about b. being positive, negative, or zero. Hence, 0 ^ x <^a ,

a > 0 , is completely general and includes lover bounds and

unrestriced variables. Symbolically , a, =« + » means :io upper bound

is placed on x .

Similarly, 0<£B<^a,a>0 is perfectly general, A slack

must have an upper or lower bound in order to mean anything, A bound

can be adjusted to zero as above, and then a negative slack B.

can be replaced by a non-negative s. , and visa versa. Note that only

one of s. , s could be present at a given vertex v. , No upper

bound on a slack is symbolically represented by o. « + « .

th
The k column, of A corresponds to arc e, of the network,

and a column of U with non-zero entry in row i corresponds to vertex

v. . The variable x. can be thought of as a flow in arc e ,

the variable s. can be thought of as exogenous flow out of vertex

VJ , and s. can be thought of as flow into vertex v. . The constraints,

then, require that the net flow in vertex v. be b .

0
Let A denote the matrix [A, U] , For a matrix B of columns

0
of A , let FB be the subgraph of G consisting of the vertices

corresponding to columns of U and edges corresponding to columns

of A together with vertices incident to such edges.

r
B

Theorem 1 If B is a basis of A , then F^ is a spanning forest

of G .

Proof: If F« is not a spanning subgraph of G , then some vertex
B

of G , say vertex v, , is not in F . Then, every entry in row 1 of

0
B is a zero. But some column of A has a non-zero entry in row 1,

and such a column cannot be written as a linear combination of columns

of B t contradicting B being a basis.

The remainder of the proof consist of showing that F« has no

cycles. Suppose F3 has a cycle ^ , e1 , v2,...,vk , ek , vk+1 - ^ ,

Then there are k column- of B , say a,,.,, IT , corresponding to

e^,,,«,ek ,

r1
Let y. " 1 " eJ " (VJ' v'

k
For v. not in the cycle , 2 b. .y ■ 0 because none of the arcs

el',,,,ek ftre inciden't t0 v4 B0 a11 bn " 0 for J ■ l|...,k .

For v. in the cycle, there are four cases to consider:

(II) e1 - (v^ v^^ , ei+1 . (v^ v1+1)

(III) e1 - (Vj^.v^ , e1+1 - (v1+1, v^

(iv) e1 - (v^ v^^ , ei+1 - (v1+1, v^ ,

For case
r i J-i

(1), b., - i and b., - 0 for Jj^i or i+1 ,
1J L -1 >i+l 1J

k
and y. ■ 1, y. ■ 1 so 2 b y •■ 0 , The other three cases are

similar, and in all of them Z y .B^ ■ o contradicting B

8

having linearly independent columns. Hence,the theorem is proven.

The above proof can be thought of as picking a direction around

the cycle and sending a flow of 1 around in that direction, A flow

of -1 can be thought of as reversing the direction of the arc and

then sending a flow of +1,

A vertex v. corresponding to a column of U in B , a basis

0
of A , will be cabled a root of the tree in F^, .

0
Theorem 2 For B a basis of A , every trae of the forest FB

has at most one root.

Proof: Suppose some tree had two roots v1 and v , A tree is

connected so there is a simple path from v. to v in the tree,

say v, , «■, , v0,,,,,v ■,} \ p \' Hence, there are k+1 columns

of B , say B ,,..,Er+ , corresponding to e1, e ,,,.,6^, v^, v^,

respectively. Let

C -1 if 3' has a -1 non-zero entry

k+1 * I k+1

* "■ ^ +1 if B " has a +1 non-zero entry,

k+£
f +1 if B has a +1 non-zero entry

^k+2 "1 k+2 ^ -1 if B has a -1 non-zero entry,

'J

k+2 .
Then, as in theorem 1, 2 y.B a o , contradicting linear independence

of the columns of B, Hence, the theorem is true.

The construction above, as before, can be thought of as sending

a unit of flow into v. and out of vk ,

9

A tree vlth one roct Is called a rooted tree, and a forest with

each tree haarig ore roct is celled a rooted forest,

A non-singular, triangular matrix is a square matrix with non-zeros

on the main diagonal and all zeros below the main diagonal, or which can

be brought to such a form by swapping rows and swapping columns. An

equivalent, inductive characterization is the following: a square

matrix B is non-singular, trian/rolar if there is e row of B with only

one non-zero entry and if the r^crix 3 fo-Tied from B by deleting

that row and the cclunm containing the non-zero entry la also non-singular,

triangular. The abo/e characterization is complete if a 1x1 non-zero

matrix is understood to be non-singular and triangular,

Theorem 3 If F_ is a rooted, spanning forest of G , then B is
■ B

a non-singular, triangular matrix.

Proof: Such a matrix B will be square by lemma If, which says a

tree has one less edge than vertex, fhe additional column of U

for each tree makes B have as many columns as rows.

The proof is by induction on m , the number of rows of A , For

mal, B is a 1x1 non-zero matrix which is non-singular and

triangular. Assume the theorem is true for 1,..., or m-1 rows

0 0
in A for some m ^ 2 . Consider a matrix A having m rows.

If B has only columns from U , then B is diagonal so

certainly non-singular and triangular. If B has a column from A ,

then F_ has an edge, and the tre£ to which the edge belongs has

at least two ends by ierana 3, Bit the tree has only one root, and

hence, there must be a vertex v. which is an end of the tree and not

a root. Then, row i of 3 has only one non-zero entry. Let B

10

be the matrix fomtd fror. 3 by deleting row i and the column

-0 ,- -s,
with non-zero ent,ry ir rov/ i . Let A = LA , UJ denote the matrix

Ü
formed I'rora A by deleting row i and all columns with non-zero

entries in row i , and let Ü denote the network formed from G

by deleting vertex v., and all arcs incident to vertex v t Then

A is the vertex-arc incidence matrix of G , and F— is a spanning

forest of G . Fuircherraorft, every -cree of Pr- 1-ias exactly one

vertex car responding to U i:: B . Hence, by the induction hypothesis,

B is non-jlngular and triangular. ■7:iere:.''ore, B is non-singular

and triangular, completing the proof.

Q
Theorem k Let A be such that every cormected component of the

network G has at least one vertex corresponding to a column of U .

B Then a matrix B of coluions of k is a basis if, and only if, FT

is a rooted, spanning forest of G .

Proof: By Lemma S, each coanecLed component cf G contains a

0
spanning tree. Let B consist of the columns of A corresponding

to all the edges in the spanning trees of the connected components

of G together ^icb r.ne coiiunr. froa U for each connected component

of G . Then by thecrcii ;,, B is non-singular and triangular. Hence,

0
the rank of A is rr .

0
Suppose a matrix B of jolvmns of A has such a corresponding

graph F . Then by theorem 5, E is non-singular and triangular.

Hence, the coluans of 3 ore linearly independent, and B is square

0
so has rc rows and m columns. Tnerefcre, 3 is a basis of A .

0
Suppose that E is a basis of A , From theorems 1 and 2, the

proof will be completed if it can be shown that every tree in the forest

11

F hac at least one root. Suppose a tree has no root. Then, B
B

has m-1 columns or less because a tree has one fewer edge than

vertices, and no tree in F can hav more than one root. But the rank

0 0
of A is m so B could not be a basis of A . Hence, the theorem

is proven.

Lemma 6 If B is a m x ra non-singular, triangular matrix of 0 ,

I's , and -1's , and if b is a m x 1 column vector of integers,

then the solution to Bx rr b has x. integer for j=l,..,,m .

Proof: The usual iterative method of solving a triangular system of

equations is to solve for one variable, substitute its value in its

place and move to the right hand side. Then the smaller matrix B

will be triangular with 0,1,-1 entries, and at each step the

variable determined will be an integer. The proof is completed.

Lemma 6 can be used to show that if b , a , and , a are

integers, then every basic solution will be integer. Hence, if there is

an optimal solution, any basic optimal solution will be all integers.

This property can also be proven frr.m the algorithm in section h but has

been indicated here tc complete the discussion of the properties of

0
the matrix B when E is a basis of A

h. The Simplex Method for Network Flows

In this section, the simplex method for solution of the network

flow problem will be presented along with an example. The algebraic

details of the simplex algorithm with upper bounds and the use of Riase I

and Phase II in solving linear programs are readily available [2] and

will not be reviewed here. However, a descriptive outline will be given

12

as a structure on whjch the later algorithms will be built. The

simplex algorithm begins with a feasible basis and nonbasic variables

at upper or lower bounds.

Simplex algorithm

Step 1: Determine values of the dual variables.

Step 2: Price out the variables and select a profitable variable for

entry into the basis. If there is no profitable variable, then the

present solution is optimal.

Step 3: Determine the changes in value of the basic variables when the

new variable is introduced into the basis with the largest change

consistent with feasibility. If there Is no limit to the change in

the new variable, then the objective function is unbounded. Otherwise,

go to step h.

Step k: If the increase in the new variable is stopped by its reaching

its upper or lower bound, then it remains nonbasic at its upper or

lower bound, sind the algorithm returns to step 2„ Otherwise, enter

the new variable into the basis and drop from the basis one of the

previously basic variables which prevented further change of the

entering variable. Def.. ne a blocking variable to be a basic variable

which becomes infeasible if the entering variable is changed any more.

Thus, a blocking variable is dropped from the basis.

This description does not handle the problem of degeneracy, which will

be discussed later,,

The procedure to be given works directly with the forest Fn in
is

G to carry out these four steps. The concepts introduced here will be

used through the remainder of this paper although the

n
details of carrying out the four steps will differ for different

problems.

Let (v, . e., vr....,v ., e ., v) be a simple path in a

network. If an arc e. = (v , v) , then e is called a forvard

arc in the path, and if e. = (v , v^) , then z^ is called a

reverse arc in the path. Ir. a rooted tree there is a unique simple

path from the root to each vertex. An ecLg* will either be a forward

arc or a reverse arc in a.'.l sue/.1 paths, and forvard BXZ will be called

an up arc with respect to "he tr3o? and a reverse arc will be called

a down arc with respect tc the tree. Thus, in a rooted forest each

arc can be designate! as an up arc or a down arc.

Several operations in a routed forest will be described for later

use in the changing of basis in step h. These operations will not

depend on whether the edges are directed or undirected. To reroot

a tree means to designate another vertex as its root and drop the

old root. To cut off the top of a rooted tree at an edge e , means

to delete the edge e fror, the tree. Then part of the tree becomes

a seperate tree which has no root and is called the top of the tree.

Either one of its vertices can be designated as the root, or it can be

grafted onto a rooted tree by adjoining an edge from it to a rooted

tret .

Network Linear Programming Algorithm

Step 1; For a rooted, spanning forest F of G , the dual variable

TJ- at a root v is given by r c if s. is basic

^-c., if s. is basic ,

Ik

If TT, is determined, then for an up arc e, = (v. . v.) . r. is
i ^ k i j ' j

given by TT. = -c, + TT , and for a down arc e, » (v , v) , TT is
J K 1 ^ J 1 J

civen by TT . = c, + TT, . All of the TT are uniquely determined
^•'jki i

iteratively because of a rooted tree being connected and having no

cycles.

Step 2: To price out and select a new variable for possible entry into

the basis, search for an arc e. or a vertex v such that one of
* 1

the following holds:

(a) s » 0 and "^i > c
i '

(b) s' - a" and 7^ > -c" ;

(c) sT = 0 and TT < -c" ;

(d) s]-a] and TT^C* ;

(e) e^ (v^ v.) , xi -0 , and ^ - ^ > ^ J

(f) e^-tv., v^ , *e .Qx,ar.dWj - ^ < ^ .

If none of (a)-(f) is found, then the solution is optimal. Otherwise,

go to step 5 with such a variable.

Step 3: The feasibility conditions here are 0<^x<£a,0<^s<^a.

In cases (a) and (b) of step 2, let v be the root of the tree

containing v , and let P = (v e ,v . .,v ,e , v) be the

path in Fn from vn to v .

In cases (c) and (d), let v be the root of the tree containing

v , and let P= (v., e., v. ,...,v, e , v) be the path in
J J J J+l *-i i/-l r

F,. from v to v .
B j r

In cases (e; and (f), suppose that v and v. are in different

trees of F . Then, let v be the root of the tree containing v.
r> 1 1

and v be the root of the tree containing v . Suppose that the

15

path from ^ to vi is (v^ e^, V2>"'*Vi~l' e±-lJ Vi^ and the

path from v^ to vr is (v e v<+1>*"*vo.i> ejl_1> vr) • lAt

P » (v^ V v2,..., v^^ «^^ v^ e^ Vj, ej, vj+1,...,vr-1, Vi, vr).

For all of the above cases, Increase x. hy Ö if e is a

forvavd arc In P and decrease x. by 9 if e, is a reverse arc

in P , For the first vertex v in P , increase s" by Q or

+ +
decrease s or y by 9 , whichever is basic or entering there. For

the last vertex v in P , decrease y" or s by Ö or increase
r ' r r

s. by Ö , whichever is basic or entering there. Set 6 at the

largest value consistent with feasibility a-nd go to step k. If there

is no bound on how large Ö can be, then the problem has an unbounded

objective function.

In cases (e) and (f), suppose that v1 and v are in the same

tree of FB . Let P =« (v., e v. ,.,.,v , e , v^) be the path in

F„ from vj to v . Increase x by e if e is a forward arc
B j i k k

in P and decrease x, by Q if e is a reverse arc in P , In

case (e), increase x, by ö . In case (f), decrease x. by 9 .

As before, set 9 at the largest value consistent with feasibility

and go to step k.

Step k: If the increase in 6 was stopped by the new variable reaching

its upper or lower bound, then it remains nonbasic,and the algorithm

returns to step 2. Otherwise, the new variable enters the basis, and

a blocking variable is dropped. We will consider the corresponding

arcs or roots as entering F^ and dropping from F- . There are five

cases to consider. The reference is to Example 1, which follows.

16

(a) A root enters, and a root drops. Then the tree is rerooted,

(Exanple 1, (l)).

(b) A root enters, and an arc drops. The arc dropping cuts off the

top of the tree, and the root enters on the top of the tree.

(Example 1,(4))

(c) An arc enters from one tree to another, and a root drops. The

tree from which the root dropped is grafted onto the other xree

by adjoining the entering arc, (Example 1, (2), (5), (6), (8)).

(d) An arc enters from one tree to another, and an arc drops. The

arc dropping cuts off the top of one tree. The top is then

grafted onto the other tree by adjoining the entering arc.

(Example 1, (5)).

(e) An arc enters with both vertices in the same tree. Then,

necessarily, an arc drops. The tree is not changed except for

addition of one arc and deletion of another arc. (Example 1,(7)),

Sxarrple 1 Suppose warehouses 1 and 2 have supplies of 10 and 6

box car loads of thread. Storage capacities are 7 box cars at each

warehouse, and storage costs sire ^2 per box car per week for warehouse

1 ar.d ^Sl per box car per week for warehouse 2, Suppose mills 5,4, and

5 will need 0,1, and 8 box car loads of thread in the coming week.

The mills have no excess storage space and must meet these demands by

shipment from warehouses 1 and 2. The train lines, available space,

and costs are shown below in algebiic form. The corresponding

graphical form illustrating the routes is shown. The slacks s. and

G~ are indicated by arrows out of and into v , respectively. All of

the lower bounds are 0 ,

17

h \ X5 \ X5 x6 X7 X8
+

81

+
82

1

1

1

1

1

1

10

6

-1 -1 1 -1 1 0

-1 -1 -1 1

-1

1

-1

-1

-8

7 5 6 5 2 3 5 6 2 1 costs

5 5 8 8 9 9 5 6 7 7 capacj capacities or upper bounds

The simplex method starts with phase I,In which all of the cost

axe 0 except for artificial variables. The entering variables will

be Indicated by dotted lines, and the variables dropping from the

basis will be Indicated by X . The symbol I }♦ Indicates a

variable at upper bound, but the arc Is not drawn so that the tree

structure of the basis will be clear. The values of the basic

variables are Indicated by numbers next to the arrows and dual

variables by numbers next to the vertices. Each Iteration below

Includes the 5 steps of the simplex algorithm except that the new

values of the basic variables are not shown until the next diagram.

Two Iterations are done In (l) and (2), but should not cause con-

fusion because they are on different components of F .

(i)

10

\
\

dr
8

-1

1

18

TT-, ■ 1 > 0 so s can

enter basis but reaches

its upper bound first.

Similarly, s2 can enter

and the artificial at

v2 drops.

(2)

 >

The new basic and dual

values are shown, s, is

upper bounded at 7 •

7r2 - TT^ - +1 > 0 and

x = 0 . and TT, - TT,. =

2 > 0 and
*?

0 so

x. and x enter. Two

artificials drop.

(:■)

IT - 7T = +2 > 0 and x s

0 so x.. enters,and the

artificial at v drops.

CO

-1 -1

-1

19

7L = -1 < 0 and 8 =

0=7 so 81 enters

the basis, and x. drops at

its upper bound. Note

v could have been chosen

to drop as well.

TT, - 77 » +1 > 0 and

x, = 0 so x.s enters the

basis, and x2 drops at

upper bound.

TT. - TT « +1 > 0 and

k Xn = 0 so Xo enters the

basis,and the artificial

at v,- drops out.

END OF PHASE I

20

The dual variables are

now calculated using costs

ck * ^ " ^3 ' +6 > 5

and x = 0 so x

enters, and x^ drops.

7T, - TT, ^ 6 < 7 and
x 5

x1 = ßj^ so x1

ajid sj drops.

enters,

-2

Pricirig out now reveals

that an optimum solution

has been reached.

21

For phase I, let us denote the dual variables by p instead

of 71^ and I«* d4 » -(pi - p) when ek =» (v^^, v.) , ^ a -Pj^ , and

d7 a p. . Theorem k says the matrix B is a basis of A if,and only

If F-, is a rooted^ spanning forest of G , provided that G has a

vertex corresponding to a column of U for each connected component

of G . Phase I starts viT.li artificials; which are the same as slack?

singled out to be minim:.zed, at all of the vertl JS of G SO G does

have a vertex with slack in each connected component. The simplex

method goes from basis to basis, and the rank of every basis is the

same provided we go from phase I to phase II by fixing the values of

and eliminating from further consideration those variables at zero with

d > 0 and those variables at upper bounds with d < 0 , Theorems 1

and 2 assure that F^ will always be a spanning forest of G with at
B

0
most one root on eacr. tree for B a basis of A . If some tree

did not have a root, then the basis would have lower rank than the

original basis contradicting the above statement which always holds

for the simplex method. Hence, the assumption that every connected

component of G has a vertex with a slack is justified because it

always holds in the computational procedure,

A labeling procedure can easily be devised to assist ii carrying

out the computation as described. However, an efficient labeling

procedure for this algorithm must be able to go up the tree as well

as down the tree. Some promising work along these lines has been done

by Scions [1C] and others.

The algorithm given does not resolve the degeneracy problem.

22

That is, in step U if several variables are blocking vaiiables,

how do we decide which one to drop? In exanple 1, this qaestlcn arises

in iteration {h). In practice, the algorithm is almost alwa^t finite

without any special procedure for resolving degeneracy. The next

section treats degeneracy in a better ./ay tnan can usually be done,

^ Phase I

Phase I of the network flow problem is called the nax-Ilow pj-obleru.

Roughlyjthis name originates by considering the artificials as being a def-

icit flow, and the problem being to maximize flow or iairlmi:e uhis deficit.

To begin, sec the variables x , s at zerc. Let y. « b,

if b. > 0 and y' = -b if b < 0 . Tne costs d are 0 for

all variables except artificials and d = d, = l for artificials

y and y, . The dual variables ai'e denoted by p . The ar-ificia'i.s

eu:e actually slacks which are aistinguiiched by liavirig d ■- 1 .

Steps 1, 2, and 5 of the simplex algcrlchm offer some ob.r:lous

simplifications for this max-flow problem. Step h can be modified

to resolve the degenerecy problem in a much better way tha.i is

generally available for a linear program and even better t'ian is

available for the network flow problem. One of the nodificat.ion-, i?.

-t- + . .
the use of slacks s, = ü which have a. equau. to zero^ ou , were

not originally present in '.he problem so have a. equal to Lv;ro« T-'scse

slacks eu:e dummy slacks added to give a root to a tree, but ihey i.vus';

remain zero because no slack is permitted there. Once they become

nonbasic, they are dropped. To begin, If b = 0 , let a slack be

basic at v. if there is a slack there. If not, adjoin a slack

25

8. with o. « 0 . The rooted, spanning forest F consists now of
i 1 B

trees consisting of one vertex which is the root of the tree.

Max-Flow Algorithm

Step 1; All of the p are +1, 0, or -1 depending on whether

the tree containing v. has a root v with y f a slack, or

y- . Hence, detenrJLning the dual variables p. Is sinrply a natter of

detsrniir.tng the root of the tree containing ths vertex v. and is no

longer an arithmetic operation.

Step 2; Let, V, =» [v1 | pi « +1), Vo » (vi | pi a 0), and V -

(v, j P tM -1], Then, pricing out and selecting a new variable is

reduced to searching for one of the following:

(a) v. € V , and s a o cr s" ■» a" ;

(b) v, € V , and s^ « at or s" « o ;

(c) ^ " (v^ Vj) x^ . 0 , atd vi e V^ Vj € Vj , or

vi € V^ v, € V£ , or

Vl e V2' V) € V5 ;

(d) ii - {wy v1) , xi » a^ , and ^ « \ , Vj E V; , or

Vl € Vl ' VJ € V2 ' 0r

vl c V2 ' VJ € V5 •

Hence, pricing out as well as determining the dual variables, is not

an arithmetic process, but is only a search. Note that cases (a) and

(b) of step 2 In the network linear programming algorithm have now

been collapsed into case (a) and cases (c) and (d) there into case (b).

If none of (a)-(d) is found, then the solution is optimal. Otherwise,

go to step 5 with such a variable.

Step 3; Step 5 is the same as for the network linear progrataciinff

algorithm except that an entering «ire will never have both vertices

In the same tree because an entering arc always lias vertices in

different V . Hence, the flow will change by amount 0 ai.ong a

path P from y to y" f or from yT to a slack^ ov from a

slack to y7 . Since y ^0 is now part of the feasibility condition^,

there is always a bound on how large 0 can bo set without /lolating

feasibility. The path P is called a flow segmenting path because

the change in flow results in a decrease in the artificials a^, i.he

end of P .

Step 4 (l); Step k{i) is the sazce a? step k of the netwerk linear

programming algorithm except that case (e) there never occurs here,

and here we specify In certain cases which of the blocking variable..«

to drop.

If an artificial y ox y reaches zero in stop >, thfto, chejige

it to a alack s = 0 with a| = 0.

If P has two slacks at its t.ids,then any blocking varia.VL'?

can be dropped. If P has one slack and one artificial, «her* c'.-op

the blocking va^'lable nearest in P to the artificiel.. if t JI-J,ö

an artificial at each end and only one variable is a blocking variable,

then drop it. Otherwise, there are at least two blocking variables

corresponding to arcs In P . Jrop the blocking arc nearest one end

of P and the blocking arc nearest the other end of P . 0.? e.

vertex v. of P between these t';o arcs, put a slack s a 0 vitli

0. ■ 0 , Now, there are three rooted trees where there ucre fc rooleö

trees before.

25

Step 4(ll); If in step ^(i},a tree with an artificial y. at

the root v had another tree or top of a tree grafted onto it, then

begin at the edge adjoined in the grafting and trace the tree away

from the root along every branch until either an end of the tree is

reached, or an up-arc e a (v. , v) at upper bound is reached, or

a down-arc e ™ (v^, v) at lover bound is reached. If either of the

two types of arcs e is found, jut off a top of the tree by deleting

e from F_ and ztake v a root of the top with slack at zero and
B 2

upper bound of zero.

Repeat for artificials y~ except look for up-arcs at lower

bound and down-arcs at upper bounds.

Return to step 1.

Proof of finlteness of the algorithm; The observation in step 5

r.
J

that the flow augmenting path P is from v. with y to v..

with y , or from y. to a &lack, or from a slack to y is

important because it shows that the flow change along P in step 3

is always away from y. and toward y" . But step k{li) assures

that at any iteration there can always be a positive flow change away

from the root of a tree with root y. and toward the root of a tree

with root y~ . If any iteration does not result in a change in flow,

then the blocking varlP-hle canrot be the entering arc or an arc in

the tree with an artificial so the tree with an artificial grows by

at least the entering arc. Hence, the number of elements in V decreases

at each iteration which does not result in a change in flow. But,

there are only m vertices in all so there can be at most m iterations

26

in a row resulting in no change in flow.

If a , a , and b are integer, then each change in flow results

in an integer decrease in the sun of the artificial variables. If the

original sum of the artificials is M , then the algorithm cannot take more

than m M iterations because the artificials are non-negative.

Even with fractional and irrational a , a , and b , finite

convergence of the algorithm can be prcven. The variables in the

forest F^ are determined once all the other variables are determined.

But the other variables can take on only two values, their upper and

lower bounds. Hence, a given forest can only take on a finite number

of values and, hence, can only recur a finite number of times. There

are a finite number of rooted, spanning forests so the algorithm is

finite.

The reason the Ford-Fulkerson labeling procedure for the max-flow

problem may not be finite (page 21 f j) when a , a , and b are

irrational is that the variables strictly between their upper and lower

bounds may not form a forest; thac is, they may form cycles. This

difficulty can be overcome with!a the framework of that procedure

by forming the set E. of arcs between their upper and lower bounds.

After each breakthrough, the labeling procedure is done first in E

and then using arcs not in 3 but checking all of the arcs in E

each time a new verte:: is labeled and unscaimed. Then, the arcs

between their bounds never form a cycle. For a network with one

source, one sink, and no slacks, the labeling procedure with this

modification is a way of accomplishing the above algorithm except that

2?

the trees in VA w-e riot kep': t.rack of. The labelling procedure

destroys all the labels a'.'ter a change in flow. Whether a more efficient

labeling procedure can ce devised to modify labels with change in

flow is yet tc be seen.

The Ford-Pulkerson procedure converts a general network flow

problem zo a problem with o::e source, one sink, aid no slacks. This

cor.versiOE was not dor:^ here LnccAiae the purpose is to develop the

network flow theory vitliv». t>'e frajmework of linear progreutming in

order to show the connection. Adjoining the additional source, sink,

and slack verttx rcakes sense graphically, but not algebraically, and the

graphical, procedure without adjoining additional vertices is closer to

the linear programmirig procedure, I;ote aJ.irj that, jjositive lower bounds

are bandied easily because no esfrumption is made on b .

In summary, the «j-d/antsges of the max »flow algorithm o/er the

network linear progrsaaJ.'^; algorithm c^s simplicity in detarrlning

dual variables and pricing oat, and th.* fact that at nest m iterations

in sequence can occor with no chtnge ir. flow. T-'V.s fact is a result

of having nu arcs erit^r with both ende In the ssune tree because when

that happens the flow cban-ge is toward the root in some arcs and away from

the root ir; others. The flow clv.nge is always away from a root v.

with y. and toward a root v with y" . The trees attached to

roots with artificials are constructed so that such a flow change is

possible.

6. Tie Primal-Dus.l Method for Network Fl ^w.s

The primal-dual avethod w.s devised [6] for the network flow

problem, and then it was generalised to the general linear program

28

[;')]• Its advantage over the simplex method depends on some simplification

for the restricted phase I problem. For network flows, its advantages

over the networy linear programming algorithm are the same as the

advantages of the max-flow algorithm Just given.

For a network programming problem, define

p<lV if e^Cv^v.) and V0

(1) dual feasibility conditions: ^ - ^ < > if e , (v v) and x-
— K K w "■

a.

TT^

^ ci , if Si = 0

1 ci > U Si - ^

1 -ci , if s" - 0

^ -c" , if s" - c^

The primal-dual method starts with a TT , x , and s satisfying the

dual feasibility conditions and O^x^a, 0<^s^a, but not

Ax + U8=b. If c > 0 . then TT . » 0 all i and x = s^ = sT = 0
^ ' 1 k i j

is such a TT , x , and s . ^ c
k * ci or Ci is neSative» set the

corresponding variable at upper bound. If there is no upper bound,

then set an upper bound M and let the variable be equal to M .

If at the conclusion the variable is still equal to M , then raise

the upper bound M , introduce new artificials, and solve again.

Starting with a TT , x , pud s satisfying (l) , and 0 <^ x ^ a ,

0 ^ s ^ a , the primal-dual method uses the max-flow algorithm

restricted to arcs e. " (v., v) and slacks s and s„ such that
k i J hü

TT. - TT. =» c. . TT, a c, , and TT. a ~c~. . At the conclusion of the
i J k ' h h ' £ i

29

max-flow subroutine, the TT'S are changed to TT. + €, v c V ,

and TT. - € > v^ e v, > where e is chosen as large as possible without

violating the dual-feaslblllty conditions (l). Note that e > 0 ,

The max-flow subroutine Is the primal step, and the dual change

Is the dual step. The two alternate until either no artificials

remain in the primal step or until there Is no bound on how large c

can be chosen in the dual step. If there ere no remaining artificials,

then the solution TT , x , s is optimal. If there is no bound on

G , then there is no solution to Ax + Us=b,0<^x<^a,O^E^a.

50

7. Flows with Gains

A network with gains Is defined to be a network G together with

a function w on E , the edges of G , to the reals. Then, w(e)

Is the gain associated with the edge e . Assume w(e) ^ 0 .

. 1 if arc e, » (v , v) for some v e V
I k l

Define a., ■ i w(e,) if arc e, ■ (v. v.) for some v e V
Ik (. k k 1

0 otherwise

The linear program In a network with gains or flows with gains [8]

problem is:

Ax + Us = b »O^x^a , 0<.s^a,

(2)
ex + cs a z(mln)

If w(e) » -1 for all arcs e, , the problem is the same as In

sections 1-6. If w(ek) > 0 and the graph Is bipartite, Dantzig [2]

has called the problem the weighted distribution problem and given the

structure of the basis. Here the basis is slightly more complex than in

sections 1 through 6. First, a preliminary lemma is needed.

Lemma 7 A connected graph G with k vertices and k edges has

one cycle, and if the edges of the cycle are removed, then the

remaining graph is a forest with each tree having exactly one vertex in

the graph.

Proof: The graph G must have at least one cycle since, otherwise,

G would be a tree, and a tree with k vertices has k-1 edges by lemma k.

'A

Suppose G has two cycles. Then, ".here is an edge of G in

one cycle but not in the other. The removal of that edge from

G does not destroy connectedness and leaves one cycle in G .

Then, G has k vertices and k-1 edges so is a tree by lemma 4;

but a tree has no cycles so a contradiction is reached.

If all of the edges of the cycle are removed, then the remainder

of the graph is a forest because it has no cycles. Each tree of the

forest must include a vertex of the cycle because the original graph

G was connected. Suppose there were two vertices of the cycle in

some tree of the remaining forest. Then, there is a path in the tree

between the two vertices and a path in the cycle between the two

vertices. Together, they form a cycle. Hence, the original graph

G would have had two cycles contradicting the previous part of the

lemma. Thus, the lemma is proven.

Let A - [A, U] .

0
Theorem 5 Let A have rank m , The connected components of

the graph IL corresponding tc a basis B ol A is either a rooted

tree, or a graph with the same number of vertices and edges and having

no slack.

Proof: A proof similar to the proof of theorem 2 shows that H
B

can have at most one slack corresponding to a connected component.

The ;5ame idea as before of sending one unit of flow from one

slack to the other along a simple path is still aplicable, but the

algebraic details are more complicated and are omitted here.

If a connected component of Kp on k vertices has k+1 or

more corresponding columns of B , then those k+1 or more columns

52
have only k rows with non-zero entries, contradicting independence

of the columns of B .

Therefore, if a connected component of H- with k vertices

has one slack, then it cannot have more than k - 1 edges. It must

have k - 1 edges to be connected. Hence, the component is a rooted

tree. If a connected component of IL with k vertices has no slack,

then it cannot have more than k edges. But A and , hence, B

have rank m , so each connected component must have as many corresponding

columns of B as vertices. Hence, a connected component with k vertices

and no slack must have k edges, and the proof is completed.

In sections ^-6 the htxsie was always triangular, and the entries were

+1 and -1 . Here, even when the basis is triangular, the entries are

not +1 and -1 but are 1 and w(ek) . The changes in steps 1-3

of the network programming algorithm given in section 1*.,

due to the gains w(e,) will be discussed first under the

assumption that the graph IL has no cycles; that is, H is a rooted

forest.

Step 1; At the root, 7^ Is still equal to c^ or -c' . If 7^

is known and e^ * (v^ v) is an up-arc, then TT. - ^rr*) (ck ' ^ >

If TT. is known and. e = (v., v) is a down-arc, then TT =
i k j 1 J

ck - w(ek)7r1 .

Step 2; Pricing out is the same for the slacks, but for the arcs it

changes to:

(e) e^ « (v1, Vj) , x£ =» 0 , and 7^ - w(e^) TTj > c^ ;

(f) ei » (vj, v^ , xi - ^ , and TTj - w(ei) ^ < c£ .

53

Step J>: This step is BIJUI'^SX to step 5 of the network prograaming

algorithm except for two differences.

Previously, the flow clmnge was +© or -© in all of the arcs

of P . Now, suppose P = (v^ e^, v2.'.-,
e
k_1*

v
k,

e
k,

v
k+1,

e
k+1''*^

v , e ., v) , and x changes by d , If e is a forward
r-1 r-i r ' k k

arc in P , then x changes by - -r \ d if ^ T
is a forward

k-l ^k-'l
arc in P and by -& if e. , is a reverse arc in P ; and x, ,

k-l k+1

changes by ••w(e1)& if -, i i^ a forward axe in ? and by
wie) K

- r \ Q if e, , is a reverse arc in P , If e, is a reverse w\.e) kfl K v k+1
ajrc in P , then the change in x is the same as the change in

x, above, and the change in x is the same as the change in x,
K+1 Kfl k-l

above. The charige in sicak at v is either + 9 or ± w(e)0

if x, changes by 9 and similarly for v ,

The second difference occurs when an entering arc has both vertices

in the same tree. Then a flow change can take place not only around

a cycle, but down the path from the cycle to the root. If the variable

dropping is on the path instead of the cycle, then the cycle becomes

part of the basis.

A cycle corresponds to a matrix of the form:

where + indicates a non-zero entry.

For any right-hand side, a system of equations with such a coefficienJ

matrix can be solved by considering the first variable to be a

^

parameter, moving it to the right hand side, and solving -ehe remaining

system, which is triangular.

If the cycles are thought of as being a single vertex, then the

connected component becomes a rooted tree with the cycle being the

root. In step 1, computing the dual variables, the TT. around

the cycle can be solved first, and in step 5, computing the change

in flow, the flow change around the cycle can be computed last as

a separate subroutine as indicated above. Step 4, the change in basis,

is similar to the network programming algorithm except that whenever

a slack enters or drops there, a cycle could enter or drop here in the

sense that an arc enters forming a cycle or em arc drops destroying a

cycle. The cycles can form when an arc enters with both ends in the

same tree as mentioned in step 5 above.

Phase I for this problem does simplify somewhat. The tree without

artificials, including the trees with cycles, all have dual variables

p «s 0 at every vertex v . The only computation of dual variables

is on trees with an artificial, but,there, actual computation must be

done. Pricing out does not simplify, but every entering arc will have

at least one end in a tree with an artificial variable at the root.

Hence, any change of flow involving a cycle will be along a path

with the cycle at one end and an artificial variable at the other end.

However, the handling of degeneracy in the max-flow algorithm in net

ion:; 1-6 can not be done for this problem. For the max-flow algorithm,

the flow change was always away from an artificial y. and toward em

artificial y" • That this important property no longer holds is

illustrated by the example below.

Example 1 The network 1B Illustrated below, and the algebraic

statement cf the problem gives the edge weights.

55

*!
X2 x?

+
yl

+
y2

1 1 1 1 = 1

2
1

1 1 = 1

3 -2 -10 » 0

0 0 Ü 1 1

No upper bounds are placed.

s is added but restricted to remain 0.

TTU - 10 TT =» 1 > 0 so x becomes
2 5 3

basic, and y_ drops .
5

(2)
^x

10

^

"1
1 i ! v o x TT^ = 1 - r > 0 so X, 2 "2 2 1

enters, and y drops

'jt

^l " ^5 * 2 " 5" > 0 so x3

enters, and x. drops

(4)

1
2

Optimal

Iteration (3) Illustrates a case when the change In flow In arc

(v0 , v) is toward the basic artificial y .

Hie two advantages of the raax-flow algorithm do not carry over to

the phase I problem here, except that the dual variables on a tree

without artificial variables are zero, and the cycles only enter into

a basis change at one end of a path. The primal-dual method can be

used here, but lacks any special advantage since the phase I problem

57
does not significantly siirplify. However, there Is a sj^ciai case of

the flows with gains problen in which tlie Phase I problem simplifies as

much as it did in the previous cheptei. The next section discusses

that problem.

8. Linear Programming In &r. undirected Graph

Suppose in the flows with gains probleir, all of the gelm,

w(e.) ~ +1 . Then th« matrix A '.s a vertyx-^dge incidence matrix

of an undirected graph J . Tb« .lolucx.s :f A correspond tc ^lgs3

and have two 4-1 entri^d .lri-lic'a.tlng the two incident vertices. The edges

are undirected and vill b:- wii^t^n e -- [v ^ v.j to disting^aish them
K 1 J

from directed edges or arc?. The order :f v., v. has no importance;
i ,]

there is at most on« edge between v and v „ and [v., v] represents
l J j- J

the same edge as [v., v] .

If any b < 0 , then thera must be a s because, otherwise, there

t.h
would be no feasible solution to Ax + Ub :- b . Hence, the i— row

n ^ n
of Ax + Us a b is 2 s, x, - sj -J b aM c" s" = -=7b + 2 (c'a,,)x .

^1 \ K ^ i ' i i 1 i k^l i Sc J

Therefors c car. bi replaced by zer: and :; by c + c a If
i k k i i

n k

c' ^ oo then 2 d x > t holds f-.-r all feasible x and, hence,

th ^ K

the i— row of Ax + Uö - b can just be dropped from the systea. If
n

o < «o , then adding c to both sides of 2ax,-Snb gives
i 1 k^L IK i i

n - K

2 a x + (cr^ - s) n b + a . Now, a - s > G so if b + a < 0 ,
kni i^^-^J-J-i a i ii

then there ii« no feasible solutior. If b. + CT ^ C , replace b

by b. + C* , replace $. by s = cj - s" ^ C , ajid set a = b + o' .

Wierefore, only the caee b ^ C need be considered here. All of the

artificial variables will be y. eo we drop the + and just write y .

!)ef1De tbe lenath .;)! a cycle to be th.e Dl.lmber of ed6ee in it.

~ 8 It B 111 a buis of A
0

, the~ t~ cycles 1D ~ are of

o44 leDgth.

Jlltoof:

Let xJ • l for J even and xJ s -l tor J odd.

a
tor all i becauae tor 1 ~2' J~a1JxJ • ai,i-lx!-1 + ai1x1 • xi-1 +xi •

a
o, aD4 tor 1 •1, z ai .. x ... ~~ + ~ axa n -l + l. 0. Bence,

J~ ~ ~ , .

a buia coul4 DOt 1ncl.u4e an even cycle beciW8e the colU111118 correepoDdina

to u even cycle are lin~,. .. " 4ependent.

U G baa nt.\ o4cl cycl.es, then every buia bas no cycle so ~

1a a rooted toreat. A gr&pb G with no oM cycles is called

ld.J&I'Ute aD4 1s eaa!J.y pl"'ven to have the property that t.:he vertices

cube divided into t.vc d1sJ.:;1nt sets v1 , v
2

such that every edge

1a 1DCid.ent to one vertex ot v1 an4 one of v2 • '!'he rovs or A
0

correspoad1~ to vertices of v
2

can be 11Ultip:&.1ed by -1 con·.rertiDa

0
A into the :aetvork tlov type -.tr1x .. ._. eect.!Qn is,

therefore, Ja1Jlly concerned vith graphs G bavi.Dg odd cy:l'!s.

Bach odd cycle in tbe basis v1ll be considered to be a 81Jl8le vertex

ao t!at tbe resul t1DI sre.p!1 1' B con-eaponding tJ.> B ia a l'OOted

forest.

Por a rooted tree, define the distance ~ the root to a vertex

to be tbe maber ot edges in tbe pa1;h frca the 1"'0t to tbe vertex.

39

For example, the distance froa the root to Itself Is zero. Define

the distance from the root to an edge to be the number of edges in

the path from the root to the vertex of the edge nearest the root.

For example, an edge incident to the root is distance zero from the

root. The edges and vertices are called even or odd according as the

distance from the root is even or odd.

An algorithm similar to the max-flow algorithm vlLl be given for

Phase I of this problem. To begin, set the variables x , c at

zero. Just as in the max-flow algorithm, let y. = b if b > 0,

and if b. a 0 let a slack be basic at v. if there is a slack there.

If not,set s. = 0 and a = 0 ,

For a tree with root v. and y basic, the even edges are

called Increasing edges, and the odd edges are decreasing edges.

Increasing and decreasing edges are only defined in trees with an

artificial at the root.

Alternating Path Algorithm!

Step 1; The dual variables p. are zero on trees without an artificial.

On a tree with root v., and artificial y. , p. = +1 for v. an even

vertex and p « -1 for v. an odd vertex.
J J

Step 2; Let ^ = ^ | p1 = +1), V2 «{^ | pi « 0}, and V = ^ | p « -1).

Pricing out and selecting a new variable amounts to searching for one of the

following: (a) vi G V and s. = 0 or s. « cr ;

(b) v. e V_ and B. « a. or s. ■ 0 ;
0 5 * T- 1

(c) e^ » [V-L , v^ , x^ - 0, an^ ^ € ^ , v G vi or

vi e V1 , vj G V2 ;

.., (d) Ct = [vi ' VJ] ' Xi 3 ^ ^ and Vi e W V5 0r

V
l e V3 ' Vj'€ V2 '

1*0

The v , v are not in any order so which of v^^ v- ^ ln ^ an^

which Is in V, or V does not matter.

Step 3: The feasibility conditions are O^x^a, O^s^a , O^y.

In case (a) of step 2, let v be the root of the tree containing

v . Since v c V , v has an artificial variable because all of

the trees with artificial variables have all cf their vertices in V,, .

Let P = (v , e , v2'*,,'vi_i' e^»i* Vi^ be the path in FT3 from v
1

to v. •
i

In case (b) of step 2, the tree containing v. has a root v
J *

with an artificial just as in case (a). Let P = (v., e., v v
J j j+1 r-1

e , e) be the path in F„ from v to v .
r-1 r B j r

In cases (c) and (d)^ suppose v. and v. are in the same tree

of Fp . Then v and v. are both in V or both in V so

the root v has an artificial. Let the path in F^ from v to v.
1 B 1 j

be (v;L, ei,
y
ul>'">vjml* e^1> vj)- Forra the cyclQ &!> e^ vi+i'---

-j.!' ej.l' VJ' ei) ^ let P= (vr ei' V-'Vl' er-l' V
be the path F from v to the cycle, where v is a vertex uf the r B 1 " * r

cycle.

In cases (c) and (d) , suppose v and v. are in different

trees of F_ . Let v. be the root for the tree containing v
B 1 1

and v be the root of the tree containing v. , Suppose the path in

FB from ^ to ^ is (v^ e^ v2,...,vi_i, e^, v^j and from

v. to v is (v., e v. ,/ , e ^, v). Let F =■■
j r J j' j+1 r-1 r-1' r

('v,e,v,.,.,b ,e , v , e,, v , e , v ,.,,,v ,e ,v),
^ 1' 1' 2' ' i-l' i-1' 1' £' j' j' j+1' ' r-l' r-l' r'

One end of P could be a cycle, but at least one end of P must be

an artificial. In case (c), designate c. to be an increasing edge.

kl

and in case (d) designate e« to be a decreasing edge. If only one

end of P has an artificial, then starting at e* and going toward the

end of P without artificial, designate the edges alternately as

increasing and decreasing edges.

Suppose an end of P is a cycle. Then that end edge in P is

incident to a vertex v, of that cycle. Denote the cycle (v , e , v ,.,.,

v , e , v) . Designate e as an increasing edge if the edge
tiK+l cK+-L 1 1

in P incident to the cycle is decreasing, and e is a decreasing

edge if the edge in P is increasing. Going around the cycle, alternately

designate the edges as increasing or decreasir/';. The edge e is

designated the st ae PI. e-, because the cycle is of odd length.

Q
Increase x. by ~ if e is an Increasing edge in a cycle

Q
and decrease x. by - if e is a decreasing edge in a cycle.

Increase x, by 6 if e is an increasing edge of P and decrease

v by 9 if e is a decreasing edge of P . Decrease artificials

at the end of P by 0 . If a slack s. is basic at the end of P ,

then increase or decrease s by 9 according as the edge in P

incident to the end of P is decreasing or increasing. If a slack

s is basic at the end of P , then increase or decrease s by

0 according as the edge in P incident to the end of P is increasing

or decreasing. Decrease y. by 0 if v. is an end of P . Set

Ö as large as possible, consistant with feasibility.

Step k{i): The types of basis change have been discussed in section

1.

If an artificial reaches zero in step 5, then replace it by a slack

with zero upper bound.

If P now has artificials at neither end, any blocking variable

can be dropped. If P has exactly one artificial, then drop tne

blocking variable nearest in P to the artificial. If no edge of P

is blocking,and the other end of P has a vertex-cluster, then drop

any blocking edge of the vertex-cluster. If P has an artificial

at each end and only one blocking variable, then drop it. Otherwise,

there are at least two blocking arcs in P . Drop the blocking arc

nearest one end of P and drop the blocking arc nearest the ether end

of P . On a vertex v. of P between these two arcs, put a slack

s. « 0 and 0. =» 0 , Now there are three rooted trees where there

were only two rooted trees.

Step 4(ii): If in step 4(i) a tree with artificial at the root had

another tree or a top of a tree grafted onto it, then begin at the edge

adjoined in the grafting and trace the tree away from the root

along every branch until an increasing edge at upper bound or a decreasing

edge at lower bound is reached. Cut off a top of the tree by deleting

the edge from F^ and put a root on the top with slack at zero and upper

bound of zero.

Return to step 1.

The algorithm is completed. Now its correctness and finiteness will

be proven.

Lemma 9 The increasing and decreasing edges alternate along P .

Proof: The edges in a tree with artificial alternate between increasing

and decreasing along any path in the tree because the distance from

an edge to the root alternates between even and odd numbers. Hence, in

step 2, cases (a) and (b), the lemma is certainly true. In cases (c

and (d), if one end of P is not an artificial, then the edges of P

k 7.

from e. to that end alternate because the edges were designated

increasing and decreasing alternately beginning at c. . In case (c),

e^ is increasing, and in case (d) , c. is decreasing. The proof

of the lemma will be completed if it is shown that in case (c) the edge

e in P next to e- and toward a root with artificial is increasing.

A vertex of e- toward a root with artificial is in V in case
Ju i-

(c) and is in V in case (d). Hence, in case (c) the vertex of e
5

furthest from the root is in V. and in case (d) it is in V .
i 3

But in a tree with artificial at the root, . i increasing edge is em

even edge so its vertex furthest from the root is an odd vertex and,

hence,in V , and a decreasing edge is em odd edge so its --ertex

furthest from the root is an even vertex and, hence, in V . Therefore,

in case (c) the edge e is decreasing ^and in case (d) it is increasing.
n

Lemma jLQ The changes of variables in step 5 does not change 2 a^ ixi
J*l 1J J

in a cycle or in P except at the ends of P where the changes are

compensated by cheuiges in slacks or eirtificials.

Proof: Lemma k proves the lemma in P except at the ends of P .

For an end of P with a cycle, the chemge in the variable corresponding

to the end edge of P is compensated for by the change in the variables

corresponding to two edges of the cycle incident to the end edge,
n

The change in 2 a.i ^ for other vertices v of the cycle is zero
" .3=0. 1J J i

by the alternating nature of the edges.

For an end of P with slack, the change in slack was defined so as

to compensate for the change in the variable corresponding to the end

edge.

44

For an end of P with y , the end edge is Increasing so y

decreases.

Lemma 11 In step 2, except for case (c) when v € V , v e V and ____ 1 i J 2

case (d) when v* € V, > V1 € Vo ' the resul'tin8 change in step 3

causes the sum of the artificials to strictly decrease.

Proof: Step h(il) assures that Increasing edges are less than their

upper bounds and decreasing edges are greater them their lower bounds

in trees with artificials at the roots. Hence, cases (a) and (b) of

step 2 always r^-jult in a decrease in the artificial at the root. Cases

(c) and (d) for which v. and v are both in V or both in V ,
1 j 1 5

but in different trees of F- , always result in a decrease in both

artificials. The remaining consideration is cases (c) and (d) when

v, and v are both in the same tree and both in V or both in
i j 1

V . In the path P ; variables corresponding to increasing edges
3

can increase and variables corresponding to decreasing edges can

decrease because they are in a tree with artificial. Let the cycle

be (v^ e1,
v2>---,v2k+1> ^+1' V where the end 0f P iS incident

to v. and e. is the entering edge. Then the edges other than e.
Ji Jb Ju

are increasing or decreasing the same as they were before in the tree

because en and e„ , are both opposite of the end edge, and the
1 2k+l '

edges alternate from e.. and e until e. is met. In case (c),

cB will be designated as increasing and in case (d) as decreasing just
Ju

as in the proof of lemma h. Therefore, the variable corresponding to

every increasing: edge can increase, and the variable corresponding to

every decreasing edge can decrease so the artificial strictly decreases.

Lemma y? If a , 0 , and b are integer, then all variables axe

45

integer except possibly for edges in a cycle which are integer divided

by two, and the change Ö in step 5 is always integer.

Proof: Initially the lemma is true. Suppose it is true at the

beginning of an iteration. Then the permissable change in a variable

is an integer unless it is an edge of a cycle in which case the change

is an integer divided by two. But the variables all change by 0

9
except for the edges of the cycle which change by - . The size of

0 k
0 is determined either by © » k or — = ^- , so Ö is integer.

All of the variables change by 6 except around a cycle, so they remain

integer except around the cycle where they remain integer divided by

two.

Theorem 6 At most, m iterations of the algorithm can occur in

sequence without any change in the artificials, and the algorithm

terminates In a x'.nite number of steps. If a , a , and b are integer
m

and Z | b. J « M , then the algorithm terminates in at most M m steps.
i^l

Proof: By lemma 6, the only iterations that could result in no

decrease in artificials are iterations for which in step 2, cases (c)

or (d) occur with one vertex in Vg. Since 0=0, the blocking variable

could not be in the tree with artificial and is not the entering

variable. Hence, the tree with artificial will grow by at least the

entering edge. Therefore, V_ decreases in size by at least one vertex

in every iteration for which 0=0, There are only m vertices

so no more than m iterations in sequence could occur with no change

in artificials.

Finiteness follows in the same way as for the max-flow algorithm

and indeed for linear programs in general cnce the objective has

k6

been shown to decrease every finite number of iterations. The bound

m M when a , a , and b are integer follows Just as before.

This algorithm enjoys the same advantages as the max-flow algorithm

and for similar reasons, Here^ cycles can form, but the essential

fact is that for edge e. in a tree with artificial every change in

variables in step 3 causes x to increase if e is an even edge and

to decrease if e, is an odd edge.

The primal-dual method explained for network flows in Chapter I,

section 6, applies here in exactly the same way, except that the matrix

A is different, and TT, - TT is replaced by TT. T TT for this problem.

f. Integer Prograjnmlng in an Undirected Graph

The integer programming problem considered in this section is:

(JO Ax + Us + Iy = b,0^ix^a,0^8^a,0^y,x and s
n
2 y = w(min) integer,

1^1

where A and U are the same as in the previous section, and b ^ 0 ,

a > 0 , and a > 0 all have integer conrponents.

By lemma 7, the alternating path algorithm gives integer answers

to (2) except around odd cycles in the basis. The odd cycles will

now be handled so as to avoid non-integer solutions.

The idea of the algorithm is the familiar cutting plane method

used by Dantzig, Fulkerson, and Selraar Johnson on the traveling salesman

problem [i] and systematically developed by Gomory (.:•], This algorithm

is similar to one that Edmonds f /J ^ä8 used to solve a special case of

(2) , the degree constrained subgraph problem, which is discussed in

the next section.

Inequalities of the form

(It) I \ ^
kcK

can be thought of as being adjoined to the system. The inequalities (k)

axe such that every integer solution to (f) satisfies them, but non-

integer answers which might arise in the alternating path algorithm

do not satisfy them. The following lemma tells exactly the type of

inequalities which will be used.

Lemma 15 Let \L be a subset of the vertices of G and E be a subset r 0 0

of the edges of G such that every edge of E is incident to at least

one vertex of Vn . Suppose that for all v e V neither s nor

s' exists. Let K = (k | e e EJ* L ■ {k | e e E and only one vertex

of e, is in V) , M « (k) e c E and both vertices of e are in

V), and J = {i I v e V). Suppose zb +Z a»2ß + l where
0 10 ^J i k€L k

ß is a positive integer. Then, every integer solution to the system (3)

satisfies the Inequality Z *», <. ß •
y x

Proof: Let x, s, be a., -...ceger solution to Ax + Us + ly » b ,

O^x^a, O^s^a ,0^y. Summing the rows 1 of Ax + Us +

Iy » b for 1 e J gives

hi

(5) 2 L \+ L*^L*i
keM keL i€J

because there are no slacks in row 1 for 1 e J , and the only variables

omitted are y and x , k ^ K , and for them a X ^ 0 and y. ^ 0.

Adding Z x to both sides of (J) gives
keL ^

k€M kcL i€J keL

From 3c ^ Q, and K = LUM follows

2 l\llhi* IA-23*1' or (7)

(8)

keK icJ kcL

1\ ^ ß + l •
kcK

3ut, the left-hand side of (0) is an integer so the right-hand side ,

ß + K , can he lowered to the next smaller integer, ß , and the proof is

completed.

Since for a given graph G there are only a finite number of

inequalities (k) of the type given in lerama 8, the system with them

adjoined is still finite. That such inequalities are sufficient to

give integer answers to (j) is proven constructively by the algorithm.

Values of x , s , artificials y , and dual variables p will

be kept track of throughout the algorithm and proven optimal at the

conclusion. However, the algorithm differs from the previous ones in

that x, y, s may not form a basic solution. The inequalities {\)

are not kept track of during the algorithm, but at the conclusion such

inequalities are formed to prove optimality. Only the phase I

procedure will be done; that is, the problem of minimi zing w = ^ ^ •

The algorithm is similar to the alternating path algorithm of the preceeding

section.

Vertex-clusters will be used in the algorithm. A vertex-cluster

is a set U. of vertices and other vertex-clusters together with a set

E of edges. If the vertex-clusters in U are thought of as

single vertices, then the U. , E form a graph with one cycle.

aacb 8ftllba wre discussed in section l. The set v0 vUl be a set

ot cert&tn of the wrticea ot G iDCluclecl in ~ vertex-cluster, u4

~ wUl be a set ot eertaln edps incitlent to at least one vertex ot

Yo •

!lie ftl'tex-cl uaters are nestecl; that is, scae ot tbea are iDClu4ecl

1D otber.. This order of inclusion is 111portut in the variable

cllup step ot the &l&Oritllrl.. 'l'bere, tbe MX1Ml vertex cluat~s ·

an tint 1;braapt ot u aiagl.e vertices 1n order to deteraine certaln

Wl'1able c:MDpa, ad then tbe variable ellaape an 4etel'II1De4 v1 tb1D

-.ch wrtu-cl.uater invol ftd be82nn1DS v1 th the lN"pst &D4 vol'k:iDS

dGifD UDt1l tbe wrtex-elust.ers consist oDly ot vertices of a •.

tt tbe •rt•J vertex-clusters are thoucbt of u s~e ftrtices,

t-.a tlley, toptber 111 th vertices aD4 edpa, tom trees roote4 at

ftl'tiCH Ol' vertex-clusters v1 th aD art1t1ci&l. Let F UDOte the

NRltiiiJI forest. 'l'he toMst P toea DOt 1DClu4e all¥ vertices,

wrtez-cl.uten, or edps W1th1D tile ftl'tex•cluatera,&D4 tbe Mxt_,

ftl'tex-cl.usters are eonsiclered t~ be vertieee ot r • As before, the

nen eclpa in F are 4eaipate4 u 1Dereu1111 e4ps aa4 tbe oc14

edpa 1D r u decreul!as qn.

'lo becln, set y
1

• b
1

it bi > 0 , u4 the forest r coaatats

of vertices With b1 > 0 • T.bere T no wrtex-cluatera Uk , \ • Y0

ia 4111pty, ad Ka is empty. ·

IDtem: A1. tel'Dat!.IW Path Alloritlll

lt!p 1: !be dn&l var1&blea p
1

are zero tor vertices DOt 1D tbe tozoeat

., ot tnea Vit!l artitici&l.a at tbe root. ID the forest P , pi • +1 tor

Tl 8D ftB vertex, u4 pi • •1 for Ti aD o44 vertex. The vert1CH

l

50
v in U for all vertex-clusters have p = +1 , and the edge set
1 iv X

E« has an associated dual variable p ■ -2 .
0 m+1

Let v1 » {i | pi - +1) , v2 - (i | pi - 0) , v5 = (i | p1 = -1) .

Step 2(i); Search for an edge e. or vertex v satisfying one of the

following:

(a) e^ = [v^ Vj] , x^ < ax , v1 eV1 , and Vj e V2 ;

(b) ^ = [v^ V , x^ > 0 , vi eV3 , and ^ £ ^ ;

(c) e£ = [v^ Vj] , x^ = ^ , v1 eV0 , and v^ ^ ;

(d) v. e V , and s or s" exists ;

(e) Vj c V^ , vi ^ Vo ' and 6i < ai or si > 0 i

(f) ^ ^ V and s* > 0 or s^ < o^ ;

(g) e^ = [v^ Vj] , ^ < a^, e^ E0 , vi c V^ and v^V^;

(h) ^ • [V Vj] , x^ > 0 , v1 c V3 , and Vj € Vj ;

(1) ei - [Vj, Vj] , x^ . a^ v1 E V0 , and v^^ ;

(J) ^ = [v^ Vj] , 0 < x^ < ^ , v1 e V0 , and vj = V5 .

In cases (a) - (c) , go to step 2(ii). In cases (d) - (j) , go to

step J,

Step 2(ii); In case (a), if x « 0 or if v
± 4 Y

Q > then chan6e

v from V to V , adjoin e and v to F , and return to
J 2 3 *> J

step 2(i). If x. > 0 and vi G V then let U E be the largest

vertex-cluster containing v . Let v. c U , v. G V , change v

from V- to V , put e, in E^ , and put every edge e = [v , v]

for v € U. A V in the edge set E . Return to step 2(i).

In case (b), change v, from V to V , adjoin e. euid

v to F , and return to step 2(i).
J

■A

In case (c), let U . E be the largest vertex-cluster containing

v . Ci.ange v from Vr to V , put v in U , e in E ,

and e. in E , Return to step 2(i),

Step 3: In case (d), let U , E be the largest vertex-cluster

containing ". , let ^ be the root of the tree in F containing

U , and let P = (v . e , v ,...,v , e , U) be the path in F

from v. to U .

In cases (e) and (f), let v, be the root of the tree containing

v and let P = (v , e , v ,...,v , e , v) be the path in F

from v, to v .

In cases (g) - (j) , suppose v and v are in different

trees of F . Let v, be the root of the tree containing v ,

let v be the root of the tree containing v. , let (v,, e., v.,...,
r J 1 I7 2 '

v. , j e. i ^ v^ ^ be the path in F from v to v , and let

(v,, e., v. v ., e ,, v) be the path in F from v to
J J J+-- r-x' r-1' r J

vr . Let P- (v^ e^ v2)..., v^ V Vj, e^ v .^...„v^. The

vertices v, and v have y., > 0 and y > 0 , In case (g) ,
1 r 1 r

e. is increasing, and in cases (h) - (j), e. is decreasing.

In all of the above cases, a positive integer change 9 can

be made in the variables corresponding to F , just as in the alternating

path algorithm. Here it must also be shown that an integer change ±0

can be made alternately within a vertex-cluster includec". in the path P.

Lemma 1,^ provides that proof. Go to step h.

In cases (g) - (j) , suppose v and v. are in the same tree of

F . Let the path in F from v to v be (v , e , v 1>'««>
V
1_1>

e^ e
J"

v) and form the cycle C = (v^ e^ v1+1>*« • ^j.]^
ey vy *g) •

52
Let the root of the tree containing v and v be v and let P =

■*■ J ^

(v , e , vp*'">vr_i*
e .i> v ^ be the Path in F frora vi t0

the cycle. If none of v,,..,,1/ is a vertex-cluster, if all increasing

edges e in P have x< a - 2 , and if all decreasing edges e

in P have x. ^ 2 ; then a variable change with 0 = 2 can be made

Just as in the alternating path algorithm except that lemma 9 is

needed to show that a positive integer change can be made through

any vertex-clusters in the cycle. Repeat the variable change with © a 2

until such a change would violate the feasibility conditlonc 0 ^. x ^ a ,

y > 0 . If an increasing edge e has x = a or a decreasing edge

e has x = 0 , then go to step k.

Otherwise, let v he the vertex in P nearest to v such that
' q r

either v is a vertex-cluster, e , is a decreasing edge with q » q-1

x , = 1 , or e is an increasing edge with x =0 - 1 . A new
q-i ' q q q

vertex-cluster U, , K will be formed. Let v ,.,.,v and all of

the vertices or vertex-clusters of the cycle C be in U and let

e e , and all of the edges of the cycle C be in E, . The q ' r-1 -« v Yi

vertex v is the base of U. . Let U, be in F and remove all of
q h h

the vertices of U. and edges of E. from F . If e was an increasing

edge with x = a ,, then let V^ include v v and all of the ^ q q-l* 0 q+l' ' r

vertices of the cycle C . Otherwise, let V include all of the vertices

of U, . Let E include all of the edges in E and all of the edges
h 0 h

with both vertices in U. OV^ . If em edge e. = [v., v.] of F has h 0 ^ k i7 j

vi e Uh * vi ^ * and 0 ^ \ ^ a > tiien ^J0111 \ ■tcboth E
h

and E and adjoin the vertex v to both U and V . Remove
0 J h 0

e and v. from F . Enlarge En to include all edges es» [v , y]
k j 0 j

55
for v some vertex in U, H V . If an ecl</e e » [v.. v.] has

h 0 k i' j

v € U^ , v y U , and x = a , then adjoin e to both E and
ih'j^h' kk' 0 k h

E , adjoin the vertex v. to only U t emd remove e , v. from
u j n K j

F .

Return to step 1.

Step k: For P = (v1, ei,
v
2>«. •>

v
r,.1,

c
r^ vr) , if \ has an

artificial, then let v be the vertex in P nearest to \, such that
> q 1

either v is a vertex-cluster, e . is a blocking edge, e ,
q ' q-1 ' q-1

is an entering edge, or v = v . Then drop all of P from e

to the entering variable from F , and drop from F all of the vertices

and edges whose path to the root Includes vertices already droppeo. from

F . Delete from Vn all those vertices and change them from V or

V, to V . Drop all of the vertex-clusters and drop from E any

edge incident to a vertex dropped,

.Return to step 1.

Lemma Ik Let U be a vertex-cluster and v e U . Then, there is
 <- 1 1

an alternating path P from v to the base of U , and the end

edge in P incident to v is a decreasing edge. If v £ V as

well, then there is also an alternating path with an increasing end

edge at v , A positive integer change in variables can be made along

the alternating paths.

Proof: The proof is by induction because it is assumed that the

lemma is true for every vertex-cluster used in foraii. ■; the vertex-cluster

U, . With that inductive hypothesis, we can assume all of the vertex-

clusters used to form U are single vertices.

Initially, the vertex-cluster U, is formed from a path

For any vertex v. £ C , l^r + l,P« (v , e , v. ,...,v

5^

P - (V e1, V
,,'Vr-l' er-l' VJ and a Cy0le C " (V V Vr+l,"t,\'

e , v) where the path P may consist only of the vertex v . The
q, r ;r

cycle C is an odd cycle and has the same alternating character as in

the alternating path algorithm.

V V Vl' Vr-l""'Vei' Vl) ^ P2 " (V ei-l' Vi-1"-"

v ,, e , v , e ,, v ,... .,v . e . v,) etre alternating paths from
r+1 r r' r-1 r-l' '211

v to v , and one of e., e is increasing while the other is

decreasing. The paths P and P are simple paths so obviously

an integer change can be made.

For any vertex vi € P , i ;> 2 , ^ = (v±, e^, \ml,.**,v2, ts.^ vj

and P- » (v., e , v ,... v , e ,, v , e , v ,,...,v , e , v , e ,
2 v i i i+1 ' r-1' r-1' r' r' r+1' ' q' q' r' r-1'

v ■,••*• tv„, e,, v,) are alternating paths from v. to v, , and one
r-1' ' 2' 1' 1 i 1 '

of e., e is increasing while the other is decreasing. The path P

is simple,but Pp is not simple. But, the increasing edges e of

P , k ^ 2 , have x. ^ O. - 2f and the decreasing edges e of P have

x. J> 2 . Hence, an integer change can still be made along P and P .

For v-, the path P « (v) has the effect of having the end

edge an increasing edge because at v there is either an artificial

or a decreasing edge incident to v. on the path leading from v

to the root. If v € V , then all of the increasing edges e of

P have x. a - 2 , and decreasing edges e of P have X ^ 2.

Hence. P« ■ (v, . e,, v .,.,,v , e ,, v , e . v ,,. ...v , e , v , e
, 2 N 1* 1' 2 r-1' r-1' r' r' r+l' ' q' q' r' r-1'

,...,v , e , v) is an alternating path from v to v with e

decreasing and permitting an integer change in variables. The proof is

complete.

Vr-1

55

The change of variables in step 3 is now complete. Finlteneas will

now be proven,
m

Theorem t If M « ^ b . then the algorithm terminates In at most
1^1

2 m M iterations.

Proof: Every change of variable In step 5 results in an Integer
m

decrease In 2 y. . Hence, the proof will be completed If it is
1^1

shown that there can be, at most, 2 m iterations in sequence with no

change in flow.

If the algorithm goes to step 2(ll), then V2 decreases by one

vertex, and V0 either remains the same or Increases. If the algorithm

goes to step 5 and no change in variables results, then a new vertex-

cluster is formed^ and V0 Increases by at least one vertex while

Vp remains the same. There are only m vertices In all, so only 2 m

such Iterations could occur in sequence.

Theorem 6 At the termination of the algorithm, let J , K , L , and

M be as in lemma IJ and let q be the number of vertex-clusters In

F ; that is, the number of maximal vertex-clusters. Then,

i€J k€L

where ß is a positive Integer, every Integer solution to (5) satisfies

2 x. ^ ß , and the present solution x , s , y is optimal to the
keK K

linear program:

Cl£> Ax + Us + Iy=b , O^x^a ,0^s^a ,0^y,

k€K y^i a^ai^ -
1-i

56

Proof: Equation (9) and the fact that every Integer solution to (3)

satisfies 2 x <£ ß will be shown together. Suppose that the
k€K K

maximal vertex-clusters are (U., E) (U , E) . Let V* ■ V 0 U.
llqq, 0 0 x,

and E^ - E0 n E^ . Let K^ - (k | ek e E^) , l/ . {k | ek € E^ and

only one vertex If ek Is in V^) , W a ^\\£o and both

vertices of ek are In V^) , and J"2 » (1 | v1 c V^) .

For each & « 1,...,q ,

(u) 2 L ^a Lbi+1 A ■'
keir ic/ keL^

"because at the base of each vertex cluster either there Is an edge e, ,

k e L , with x » a - 1 , or there Is an edge e , k ^ IT , with

v = 1 . All other edges e k ^ IT , Incident to vertices of V^

have x. = 0 , There are no slacks on v € V because of step 2(l)

o
case (d). Hence, 2 -b, + 2 n Is an odd number ; say, 2ß + l ,

l€ J^ 1 keL^ K

Then, lemma 15 asserts that every Integer solution to (J) satisfies

k€ir

fhe vertex sets ^f»*^ a1** pair-wise disjoint, and the edge

sets EJ:,,.,,EQ eure pair-wise disjoint. Summing the equations

Z «b. + 2 -ex - 2ß +1 for i^l,,..,q gives Z b + Z a - 2ß + q,
le/ x kcr K leJ 1 k€L K

where ß a Z ß

Thus, equation (9) Is proven, and summing the Inequalities (lÄ)

for i » 1,...,q , gives Z x. ^ ß for every Integer solution to (5).
k€K K

57
To prove optimality, the complimentary slackness conditions

(page 15^,8^) wiH b6 use<i since the solution Is no longer basic.

The dual variables are p * +1 for v € v , p - 0 for

v, € V . p, ■ -1 for v. e V , and p , - -2 , The folloving
i 2 ' ' 1 15' m+1

conditions nogether with complimentary slackneas prove optimallty:

(13) if ek e Eo , ek - [v^ Vj] , then ^ + ^ + Pm+1 - 0 ;

(Ik) if ek ^
Eo ' ek - ^i'

VJ^ ^ " ak'
then Pi + Pj ^ 0 '

(15) if ek ^
E
0 > ek =• i\> v^ * 0<\<<\' then pi + pj = 0 ;

(16) if ek ^
Eo ' ek ' fvi' VJ^ ' ^k ^ 0 ' then pi + PJ ^ 0 J

(17) if sj" = a* or s^ « 0 , then Pi^0 ;

(10) if 0 < sj" < aj" or 0 < s^ < a^ , then pi = 0 .

(19) if s^ = 0 or 3l ^ ^l r then Pi 1 0 •

(fiO) 2 je = ß .
k€K K

Condition (13) follows from the observation that if e
k ^

E
0 * then

vi€ vi ^ vj€ vi •
If (li*) were violated, then either v € V and v. e V , or

v. € V and v € V . But the algorithm has terminated, and step 2(i)
i 3 J 3

case (b) excludes ^ € V and v € Vg , and case (h) excludes

v. e V and v e V .

Similarly for (15), step 2(l) case (a) excludes v € V and

v e V , case (b) excludes v € V and v c V , case (g) excludes

v, € V, and v. e V, , and case (h) excludes v. € V and v^ € V, .
il j 1 ' 13 J5

Hence, either p± £ \ and P. € V , or pi e V2 and p^ € ^ . In

either case, p. + p. =0,

For (16), step 2(i) case (a) excludes v1 € ^ and v e Vg ,

and case (g) excludes v1 € ^ and v € V1. Hence, Pi + Pj 1 0 •

56

In (17), step 2(i) case (f) assures that v ^ V so p. > 0 ,

In (lö), step 2(l) cases (e), and (f) assure that v. € V and

pi - 0.

In (l9), step 2(i) cases (d) and (e) assure that v, 4 V and

Equation (ll) proves that ^ j\ * & > an(i Sl™nlng for I = l,,.,,q

gives (20).

Corollary 1 If G has no odd cycles or If every odd cycle in G has

at least one vertex with a slack permitted, then no vertex clusters

need be formed and no inequalities need be adjoined to the linear

program (5) in order to find an integer answer.

Proof: The proof follows from the fact that V has no slacks at any

of its vertices.

Corollary 2 An integer solution x , s , y to (5) is optimal if,

and only if, there does not exist an alternating path P in G

with an artificial y. > 0 at one end and an increasing edge at that

end of P , and the other end of P having a slack or artificial

which can change to compensate for the change in the other e^.d edge

of P , The path P need not be simple,

Kfc The Degree-Constrained Subgraph Problem

The degree p(v) of a vertex v of a graph G is the number

of edges incident to v , Let H be a subgraph of G and let the

degree of a vertex v in H be denoted p'Cv), The integer program

in an undirected graph of the preceeding section can be interpreted as

the following problem: if an ed^e e. can be repeated a times in

determining the degrees p'Cv) of vertices v in H , then rind, if

59

possible, a subgraph H of G such that b < p'Cv) < b. + a" if s'
i i i i i

exists, b1 - O^p'^) ^^ if s^ exists, and b = p'Cv) if

no slack is permitted at v. . Here, if a' « + » , then there is no

upper bound on p'Cv.) , and if o » + » , then there is no lower bound

on p' (v.) , although zero is always an implied lower bound on v .

This problem has been studied by Berge [l], Norman and Babin [y],

and Edmonds [It] and [^].

Corollary 3 (Berge, Norman, Rabin) Among all subgraphs H of G

having p' (v.) ^ b , a given subgraph H has the maximum number

of edges if, and only if, there is no alternating path between

two vertices v, and v of H such that p'Cv) < b p'CO < b ,

and the alternating path has increasing edges at ea?h end.

Proof: This corollary follows from corollary 2 applied to the

following special case of (j):

(21) Ax + Iy = b, O^x^O^, O^y, x integer

m

2jyl = w(min) .

ial
m

Subtracting the rows of Ax + ly = b from the objective Z y. and

dividing by -2 converts (21) into

(2E) Ax+Iy = b,0 ^.x^o^, O^y, x integer.

n

I
kml

x a z(max) .

6o
REFERENCES

1, Berge, C,, "Two Theorems xn Graph Theory," Proc. Nat. Acad. Scl.t

45(1957), Ö42.

2, Dantzlg, G.B,, Linear Programming and Extensions, Princeton

University Press, Princeton, New Jersey, 1965.

3, Dantzlg, G.B., L.R. Ford, Jr., and D.R. Pulkerson, "A Prlmal-IXial

Algorithm for Linear Programs," Linear Inequalities and

Related Systems, Annals of Mathematics Study Number 38,

Princeton University Press, Princeton, New Jersey, 1956, 171-Wl,

k, Edmonds, J. "Covers and Packings In a Family of Sets," Bull. Amer.

Math. Soc. 68(1962), i+94-499.

5. Edmonds, J., "Paths, Trees, and Flowers," National Bureau of

Standards, Washington, D.C., 1962,

6. Ford, L.R., Jr. and D.R. Fulkerson, "Solving the Transportation

Problems," Management Science. 5(1956), 24-52,

7. Ford, L.R., Jr. and D.R. Fulkerson, Flows in Networks. Princeton

University Press, Princeton, New Jersey, 1965.

8, Jewel, W. S., "Optimal Flow tnrough Networks with Gftlns," Operations

Research. 10(1962), 476-^99.

9, Norman, R.Z. and M.O. Rabin, "An Algorithm for a Minimum Cover of a

Graph," Notices of the Amer. Math. Soc.. ?(l958), 56.

10, Scolns, H. I., "The Compact Representation of a Rooted Tree and the

Transportation Problem, " International Symposium on Mathematical

Programming, London, 1964.

